
Continuous Delivery? Easy! Just Change Everything
(well, maybe it is not that easy)

Steve Neely and Steve Stolt
Rally Software

3333 Walnut Street
Boulder, Colorado 80301

Email: {sneely, stolt}@rallydev.com

Abstract—Rally Software transitioned from shipping code
every eight-weeks, with time-boxed Scrum sprints, to a model
of continuous delivery with Kanban. The team encountered
complex challenges with their build systems, automated test
suites, customer enablement, and internal communication. But
there was light at the end of the tunnel — greater control and
flexibility over feature releases, incremental delivery of value,
lower risks, fewer defects, easier on-boarding of new developers,
less off-hours work, and a considerable uptick in confidence.

This experience report describes the journey to continuous
delivery with the aim that others can learn from our mistakes and
get their teams deploying more frequently. We will describe and
contrast this transition from the business (product management)
and engineering perspectives.

I. INTRODUCTION

When Rally Software was founded in April 2002 the
engineering strategy was to ship code early and often. The
company founders had been successfully practicing Agile and
Scrum, with its well-known patterns of story planning, sprints,
daily stand-ups and retrospectives. They adopted an eight week
release cadence that propelled the online software as a service
(SaaS) product forward for more than seven years. Then we
decided to change everything.

Under the influence of Anderson’s book on Kanban [1],
Humble’s writings on continuous delivery [2] and on-site
training by Don Reinertsen [3], we adopted a model of
continuous flow, using Scrum-ban with the vision of releasing
new code on-demand and at-will. This was our first step
towards continuous delivery.

We did not know how long this journey would take nor
how complex it could become. However, with careful planning
and designated exit strategies we knew there was a path of
Kaizen, or continual improvement, which would result in a
higher quality organization.

This paper presents our experiences in moving from an
eight week release cadence to continuous delivery. We describe
and contrast this transition from the business and engineering
perspectives as we provide motivation for why and experiential
advice on how to adopt continuous delivery in other teams.

II. WHAT IS CONTINUOUS DELIVERY?

Officially, we describe continuous delivery as the ability to
release software whenever we want. This could be weekly or
daily deployments to production; it could mean every check-in

goes straight to production. The frequency is not our deciding
factor. It is the ability to deploy at will.

Covertly, we know that the engineering discipline required
to support such a model must be strong. Our systems must
be finely tuned and comprehensively governed by automation,
with thorough monitoring and testing frameworks.

The engineering challenge to support per-commit produc-
tion deployments is readily savored by technical teams. We
engineers love a challenge. There may be an initial hesitation
by some in the organization who hold the belief that “letting
software bake” makes it somehow safer, but this fallacy is
quickly vanquished as the support system for continuous
delivery is realized. The improved test coverage, rapid feed-
back cycles, scrutiny of monitoring systems, and fast rollback
mechanisms result in a far safer environment for shipping
code.

But it is not free; it is not painless.
It is important to have the right level of sponsorship before

you begin. A champion trumpeting the the horn for continuous
delivery is a key starting point but you must garner buy-in
from the executive and senior management teams. When you
present the vision to these stakeholders it is important to have
the mission clarified. What are you trying to achieve through
continuous delivery and why? You must set clear objectives
and keep progress steering toward the right direction. There
are many side paths, experiments and “shiny” things to distract
you on the journey towards continuous delivery. It is easy to
become distracted or waylaid by these.

Equally important is setting expectations and tracking ap-
propriate metrics along the way. This helps you demonstrate
progress over time. Depending on your existing infrastructure
and legacy systems the switch to a flow-based model of
software delivery will take varying amounts of time. Setting
objectives, “mother strategies” and “true north” goals will help
guide the whole team and provide anchor points for inspection
and adaptation.

A. Our starting point

Rally had been in business for just over seven years and
had built a successful business deploying code to our SaaS
product every eight weeks. We executed planning-sprint cycles
over seven of those weeks and spent one week “hardening”
the code. This week was an extended bug bash when everyone



in the company clicked around the application trying to find
defects in the new software. As defects were logged the
engineering team worked frantically to burn down the defect
backlog. It was a laborious and expensive week for the
company.

Releases would go out on a Saturday morning, with sched-
uled application downtime for executing database migrations.
Compressed WAR files would be manually copied across the
network in preparation for the deployment process to begin.
Engineering would be on call, with everyone watching the
charts as the deployment took place via a mix of manual
operations and scripts. If anything went wrong we could lose
a Saturday to fixing the failure. Occasionally problems did
not surface until Monday when user traffic spikes and so we
would arrive early that morning as a precaution.

After a successful release Rally would celebrate. The event
was recorded for history with a prized release sticker and the
eight week cycle began again.

III. WHY CONTINUOUS DELIVERY?

In our Scrum days, product management would identify
major features in a release and everyone would plan to these
features with a date in mind. Marketing knew what was
coming up and could advertise accordingly, Sales could entice
customers with the latest and greatest product features, and
User Learning could prepare help documentation and tutorials
in advance.

A downside of these eight week releases was that valuable
shippable increments would often wait. Features completed
early in the release are artificially delayed and lower priority
defects (those that did not merit an special out-of-band release)
would remain broken in production.

Worse, under pressure to deliver the major features identi-
fied at the beginning of the release, sometimes scope was cut
back too aggressively. Features that needed one more week
of work could not wait. They would be released as scheduled
without the full functionality originally planned. We always
had the best of intentions to return to these features but eight
weeks is a long time; plans change.

A. Why would Engineering care?

Selling continuous delivery to our development team was
relatively easy. The software engineers at Rally are eager to
experiment with new technologies and methodologies. They
understood that smaller batch sizes would lead to fewer
defects in production as we limited the size of code changes
and garnered fast feedback from our systems. When defects
arise in a small batch system the focus on where to look is
greatly narrowed since less code was shipped. An eight week
corpus of code is a significant haystack to look through when
problems appear.

Further, the flexibility of continuous delivery would allow
Engineering to try out new ideas and roll them back if
there is an issue. Waiting for long periods of time between
deployments inhibits experimental behavior and encourages a

more conservative mindset. Continuous delivery shortens the
feedback cycle and keeps progress moving at pace.

Engineering also knew that shipping in small batches would
result in fewer fire drills and hence less stress. Regular code
deployment makes you practiced, comfortable and efficient.
The “scary Saturdays” become a thing of the past.

Finally, Engineering had a sense of wanting to be the cool
kids. We had read engineering blogs and talked to teams
from other companies like Etsy, Amazon and Facebook about
releasing continuously. We wanted to too. It would be a fun
challenge.

B. Why would the business care?

After seven plus years of practicing and selling Agile with
Scrum Rally was proud to be labeled an industry expert. Our
product was successful and the company was rapidly growing.
Rally has always been a company that embraces change and
it was time to change.

Eight week release cycles are too long in the on-demand
software world. To stay competitive you must be able to sell
features that match or beat your peers. Releasing every two
months is painful for a number of reasons: (1) when you
miss a release you potentially have to wait another eight
weeks to deliver your feature to customers; (2) technical
complexity builds up over time: merging code, coordinating
data migrations, and integrating long running branches is
time consuming and error-prone. Rally’s product managers
understood that this introduces risk; (3) the “Scary Saturdays”
required “all hands on deck” with everyone watching the
charts. This included representatives from the business. Since
we were only releasing code six times a year we had to
carefully plan. Preparations were time consuming, detracting
form other work, and we were not practiced at it.

Yet our product managers were somewhat ambivalent to-
wards the full adoption of continuous delivery. They simply
wanted to release code any time they wanted and did not care
about every check-in going directly to production. However,
they were very interested in trying kanban in place of Scrum
and had been trying to convince Engineering to try kanban
for some time. Here was a common ground here on which to
build.

The business’ argument was that kanban would empower
the teams to work at an optimal workflow and allow them the
latitude to deal with issues around technical debt. Engineer-
ing’s argument to the business was that continuous delivery
could allow them to release whenever, ship fixes whenever,
and better support the incremental delivery of value.

Although Engineering was quick to vote in favor of a shorter
release cadence the business was ultimately convinced by a
more subtle argument: the process of getting to continuous
delivery is engineering driven with a myriad of positive
side-effects. Including: the requirement for tighter engineering
discipline; fast, reliable and scalable test suites; full automation
of deployments; comprehensive systems’ monitoring; and fine-
grained incremental delivery of value. Choosing to focus
engineering effort on any of these was a clear win.



So both sides were convinced. We built kanban boards,
practiced continuous flow and started to shorten our release
cadence.

IV. TWO STORIES OF CHANGE

A. A story of change in Engineering: “Push direct to produc-
tion? What?!”

A new hire and I were pair programming on a defect when
he encountered continuous delivery for the first time. We
identified the root cause of the defect, wrote a failing test and
implemented the code resolution. When the code was ready to
be pushed to the engineering git repository the new hire asked
“what next”.

I explained that firstly our Jenkins continuous integration
server would pick up the change in the code repo, run the unit
and integration tests, and deploy our service to a test server.
Secondly, a health check monitoring system would interro-
gate the test server to ensure that the service was running.
Finally, deployr (our Ruby-based deployment system) would
automatically deploy the code to production and ignitr would
roll the service live. “Deploy to production? Automatically?
That’s scary!”, he exclaimed.

We talked about why he felt that the push to production was
scary. The test we had written proved our code change fixed
the defect and the comprehensive test suite would exercise the
codebase with our change. The test deploy and monitoring
would verify that the service started up correctly and the
deploy to production mirrored that pipeline. Reassured by our
conversation the new guy pushed the code and the automatic
processes took over.

That afternoon we received an email from a customer saying
that they had noticed the defect fix and wanted to say a huge
thank you for resolving a pain point in the application. The
new hire came over to me and with a big smile said “this
continuous delivery is hot stuff!”

B. A story of business change: ready-fire-aim

As we mentioned earlier, Rally is a company the embraces
change. We had executive management very excited about
using kanban. Engineering had agreed because it gave them
the opportunity to focus on continuous delivery with less
process and fewer meetings. So, we fired our kanban bullet.
We canceled the traditional Scrum ceremonies and moved
our work to web-based kanban boards. At first everything
was great. We had some executives excited about Engineering
using kanban and we had some engineers excited about fewer
meetings.

We soon realized that there is more to implementing kanban
than having your work on a kanban board. You need a shared
understanding of what columns are on the board and why, and
agreements on when to move things from one column to the
next. You need a shared understanding of what the work in
progress (WIP) limits will be for each column. You need to
have shared agreement on what will be done when a WIP limit
is exceeded or when a card stays on the board for too long.

In hindsight, we should have created a more thoughtful
plan and aimed before we fired the kanban bullet. This is
ironic, because we have world class coaches that train other
companies on these processes, and we did not leverage them
internally. Our correction steering began with training all
teams on kanban, and our workflow immediately improved.

V. WHAT WE DID

The transition to continuous deployment requires a signifi-
cant effort from engineering. This section begins by describing
some of the activities and methodologies we employed. The
end of the section describes where we started with the business
and discusses a key issue on defining dates for release.

A. You do not have to go from eight to zero overnight

Jumping directly from eight week releases to a push-to-
production strategy is clearly not a sensible approach. We
began by shrinking our release cycles down to fortnightly,
weekly, semiweekly and finally at-will. These steps took
weeks or even months of preparatory work to get our deploy
process streamlined and automated.

The step to “at will” was exercised by our running of a
thought experiment. We would pseudorandomly pick builds
during the day (by rolling a virtual die) and hold a “Roman
Vote”. The vote required a short meeting of representatives
from each development team and stakeholders who would
review code commits. The meeting attendees would “thumbs”
up or “thumbs down” the release. If anyone gave a thumbs
down that would trigger a discussion on what was blocking
the release and how could we make sure that similar blockers
would not hold back future real releases.

At regular retrospective meetings we would discuss releases
from the previous period and identify what worked and what
did not work. All the time we are taking incremental steps,
measuring progress, and practicing a reflect, inspect and adapt
cycle.

B. Documenting the engineering process

In Engineering we spent time documenting and fully under-
standing our process, from pulling a story to deployment and
thereafter. We tried to tease apart each step in the development
pipeline and work on scripts to remove manual steps. It was
time to ”automate all the things”.

At first we tried to deploy every week (even as a thought
experiment), then twice a week, and finally at-will. When you
cannot release code from a given commit it is important to
identify what is preventing you from deploying now. Maybe
it is a cold database migration that changes the structure
of a database schema. Perhaps there unknown performance
implications? Does the team feel that a load and performance
test run is necessary?

C. Feature toggles

We use git for or source code management. Everyone works
off a master branch and we rarely employ long running
branches. Not even feature branches. Instead we use feature
toggles.



The no-branch policy encourages small sized stories and
frequent commits. We have felt the pain of merging long
running branches too many times. Merge conflicts can take
hours to resolve and it is all too easy to accidentally break the
codebase. Git does an amazing job of automatic, even three-
way or octopus, merging of branches but it does not always get
it correct. This has introduced bugs in our application before
and they can be difficult to track down.

Instead of feature branches we use in-code feature toggles
[4]. The concept is fairly simple: you add a framework of
conditional logic that hides code changes not ready for general
release. We built an administration interface that allows these
toggles to be switched on at different levels in the application.
A feature can be toggled on for all users, an organization or
an individual user (or users).

Feature toggles allow us to stage switching on code and
monitor its effect on the system (behind closed doors in
Engineering we liken it to “testing in production”). If the
database load suddenly jumps through the roof or requests
start to back up then we can toggle off the feature and return
the system to its previous state. We can try out features in
quieter periods and rollback if needed.

Testing feature toggles has been criticized as producing a
combinatorial explosion of tests. The argument posits that you
must factorially test with every combination of on/off for every
toggle. In our experience this is not the case. Features behind
toggles tend not to cross boundaries or interfere with each
other. Further, the combinatorial criticism would be the same
problem with feature branches, and with feature toggles it
is simpler as you toggle on and off in test code. The only
additional complexity in testing toggles is that you must be
cognizant of what will be toggled on in production at the same
time.

When a toggled story is ready for general release we write
a following story to remove the toggles. If you forget to retire
toggles your codebase becomes a mess of feature specific
logic. This follow up story keeps our codebase clean and is
specifically called out in our working agreements.

D. Dark and canary deployments

Dark deployments are services in production that process
real traffic but have no impact on the running system. This is
a mechanism for phased deployments and detecting problems
in production before customers would be effected. By testing
your service with actual traffic you reduce the risk of missing
bugs that test traffic may not discover.

The method for standing up a dark deployment is to find
a place in the code path where you can tee the incoming
requests. Asynchronously send a copy of the requests to your
dark service and log interactions. Care must be taken to ensure
that the tee’d traffic is truly asynchronous and does not impact
regular request flow. Use of programming constructs such as
Futures or Actors with a library like Akka [5] will help with
this.

Another technique you can use for testing with production
traffic are Canary deployments. These are a single node in

your multi-cluster system running new code that can be taken
back down if it misbehaves. The metaphor is borrowed from
the canary in a coal mine. If it dies, then get out and save
the rest of the system. If you deploy a “canary” node you
must ensure any modifications it makes to shared data are
backwards compatible with the rest of the system.

E. Test planning

If you want to release code frequently you must remove
manual steps. We used to rely on manual testing as a step
before code could be shipped to our master branch for a
production release. Quality Assurance (QA a.k.a. “test”) had
to check a box indicating that the code had been manually
verified and had their stamp of approval for release. This is
slow, error prone and not methodological.

But tester expertise and mindsets are essential. We like to
think of the mind of a QA as a weird and wonderful place.
Their professional experiences enable a different analysis of
code and testers have an uncanny ability to discover edge case
bugs in applications. As a developer working deep in the code
it is easy to miss angles for test that QA can spot early on.

We continue to utilize tester expertise by changing our
process to include a phase for test enumeration. This phase
is pre-development, before an IDE has been opened or line of
code written. Test planning is a pair (or tri-) exercise in which
QA works with developers to document a comprehensive list
of automated tests.

For stories that require modification of existing code we
may go to the lengths of documenting existing tests before
pulling the story for test planing. This provides visibility into
the test coverage of the code, allows QA and developers to
close gaps and gives the team a level of confidence that that
part of the application has been exercised by the automated
test suite.

The result of test planning and obtaining a fuller understand-
ing of our automated test suites is that QA no longer needs
to manually test the majority of our application for regression
bugs.

F. Where did we start with the business?

We fell in love with toggles. When we were releasing every
eight weeks, features would be mostly done when we released.
When we started releasing much more often, this was not the
case. How should we deal with 5% of a feature’s software
being released? In some cases 5% is not really visible to the
user, and in most cases 5% of a feature is not worth making
noise about. We knew we did not want to blast the users every
time part of a feature got released. The solution was feature
toggles. Building features behind a toggle provides us with
the ability to toggle features on an off at will and on and off
for specific customers. This gives the business control in the
following ways:

• Stage a rollout - internal, beta customers, general avail-
ability

• Rollback - an unforeseen negative side-effect is encoun-
tered, turn the new feature off



• Market release - I want to enable a set of features together
for a larger rollout timed to a conference

We use the term “enablement” internally to refer to the
education around new features (both internally and externally).
The Product Marketing team handles the bulk of enablement
activities. They struggled in the beginning as we moved to
continuous delivery.

The struggle centered around the fact that a consolidated
enablement push every eight weeks was no longer an option.
With eight week releases there was a lot to talk about. Large
internal meetings were scheduled with Sales, Technical Ac-
count Managers, and Support teams to educate everyone about
new features. However, when features are being released every
few weeks, the value of these big meetings rapidly diminished.
We needed a leaner approach. Big meetings got replaced by
crisp emails. The information about new features is posted
to internal wikis and blogs. The responsibility to learn about
new features was pushed out to the Sales, Technical Account
Managers, and Support Teams.

Externally, we used to hold a webinar every eight weeks
describing the new features in a release. With continuous
releases this has largely replaced by blogs. We also use
more small callouts or “New” badges in the product to draw
attention to new features. Today we enable in a more subtle
ways, to not overload the customer. We save our voice for the
larger features and larger venues.

G. Where are my dates?

Although we engaged executives with the push to kanban
we made a crucial mistake by not performing a deeper analysis
across all departments. The two most important stakeholders
we skimmed over were Sales and Marketing.

The Sales teams had come to rely on our eight week
releases. These gave them time to prepare for the new features
and set expectations with existing customers. Marketing was
used to ramping up to message the eight-week release, then
starting work to prepare for the next release in eight more
weeks. With continuous flow, Sales and Marketing were not
quite sure when anything would be released.

This was particularly painful for the “product owner” role.
Part of the product owner’s role has been to buffer the team
from distractions. Most of the Sales and Marketing teams
respect that. So, since Sales and Marketing could not rely on
feature a, b and c coming out with the next release in x weeks,
they asked the product owner. But the product owner did not
really know exactly when the next feature was going to come
out. They would give vague and unsatisfying answers to Sales
and Marketing when asked. As you can imagine this was not
great for their relationships.

We eventually learned, that we need to increase the level
of transparency with Sales and Marketing. We could not tell
them what we were going to release in eight weeks then go
away, pop up eight weeks later and say “ta-da, here are the
features we promised.” We had to provide mechanisms where
they could track the status of work in real time, so they can
plan accordingly.

We found it easier to maintain a calendar communication
cadence with stakeholders. As a company we have annual
planning and quarterly planning. Each product line has a
monthly council to gather stakeholder feedback and to keep
them current on what is being being built and what is coming
next.

VI. LESSONS LEARNED

We have implemented many changes to our processes with
varying degrees of success and failure. In this section we
highlight lessons learned — some from experiments and some
from pain.

A. A story of warning — the day we broke production

Circumventing the checks and gates to release code is a very
bad idea. We discovered this the hard way when we locked
out all a small number of beta testers for about four hours one
morning. This is a story of what not to do.

We were having problems deploying a significant code
change because our test deployment kept failing in the
pipeline. We decided that it was because there was bad data on
the test system. This was incorrect. The actual problem was
that our new code was incompatible with the old data format.

To get the tests to pass we deleted all the historical test data
and the new code made it out to production. Then everything
stopped working... the new code was not compatible with
the production data. Fortunately, since we were in early pre-
release for this particular service our mistake only affected
our select beta customers (who were still a little mad at us).

The lesson learned from this is that your tests, gates and
checks are there for a reason. Always run them with old data
and never circumvent the process without a clear understand-
ing of what you are doing. The ability to release quickly does
not mean you should rush without full understanding.

B. Work life balance

An immediate observation in moving to a continuous deliv-
ery model is that everyone in Engineering becomes practiced
at releasing code and has a safety net of comprehensive
automated test suite with gates, checks and balances between a
developer and production. Our development and the operations
teams are happy that they no longer needed to work Saturdays
to release software. The business is happy because they were
not worried about an all-eggs-in-one-basket Saturday release
failing or having to wait eight weeks for another release of
functionality.

C. Move fast?

If you want to move fast, deploy with high frequency and
delivery code continuously it is imperative that you know the
state of your system. Monitor everything. We use a variety
of monitoring tools like Splunk, Ganglia, Nagios and GDash.
Everyone on the team watches when a deployment goes out
because you need to quickly identify if your commit affects
the production systems in a negative way.



The default approach to problems in production is to fix and
roll forward. Since we are deploying small batches of code this
is usually fairly easy to manage. Even at scale.

Rolling back a commit should be the last resort. Especially
because other commits may have gone out on top of that
commit and have muddied the codebase.

D. On-boarding

The Engineering organization discovered that it is easier to
on-board new employees and get them up and running faster
because we have built a safe-to-fail environment. That is, if
existing software has good test coverage, new people can be
more fearless and be productive earlier.

E. Livelihood

Be aware: your teams will find this scary (you might too!).
The transition to a continuous delivery model can make stake-
holders uncomfortable. The ability to push code directly to
production does come with added responsibility — developers
must be diligent in writing tests and monitoring the system.
Everyone in the team adopts a operational aspect to their daily
roles.

Members of our QA team were particularly worried about
not having time to test code before it shipped. They needed to
switch to a mindset that trusts the automatic tests to perform
this task. This naturally led to the fear that they would be
automated out of employment. This is absolutely not the case.

As mentioned earlier, before a story is coded we execute a
“test planning” phase. This needs a professional QA mindset.
QA does not just appear blindly at this stage. They will have
spent hours reading stories in the backlog, performing research
into the background of the story and brain storming testing
angles.

With the decreased load from test automation some of our
QA team have adopted a TestOps role. TestOps monitor our
application with tools like Splunk and Ganglia to discover
changes deep within the system. DevOps is a commonly talked
about role in our community and we suspect that TestOps will
become a familiar role in engineering teams of the future.

Operations teams also have to alter their mindsets to accom-
modate continuous delivery. There will no longer be scheduled
deployment dates when the operations team copy code around
data centers and execute startup scripts. Instead, they will be
working to support the continuous delivery pipeline with SSL
tunnels, firewall gateways and monitoring solutions.

F. Speed is difficult

At one time our GUI test suite took nine hours to run. Since
a passing test run is a prerequisite for a production release this
mean the fastest we can ever release is nine hours.

When test runs take this long people begin to ignore them.
To resolve this one must break down the suite, optimize long
running tests and parallelize. Our advice here, learnt from pain,
is to thread early and often. Adding concurrency de facto is
far more time-consuming than working on it up front.

G. Must trust tests

If tests are nondeterministic people will stop listening. Tests
that pass or fail based on race conditions or test execution
ordering are essentially useless. We call these ”flaky” tests.
Flaky tests cannot be tolerated.

We fell foul of a set of flaky tests when making a cross
cutting change to improve performance of our application. The
GUI tests were still slow at this time and failed on an nine hour
overnight run. We ignored the failing GUI test run because
they regularly flaked out. After a day of high stress fixing the
defective production systems we ran a “PER” retrospective
and realized that the GUI tests were indicating this problem.
This lesson encouraged us to invest heavily in our GUI test
framework.

H. Cause pain — get things done

When something is painful we react to that something.
Firing of pain receptors invokes immediate remedial action.
Want action? Cause pain.

Rally Engineering spaces host collections of colored LED
lights that track our builds. If all tests pass then the lights
go green; if any test fails then the lights go red. We have
a working agreement that says: when the lights are red you
cannot push code. 1

The team is always trying to move faster with faster builds,
tests, releases, and value delivered to our customers. To make
tests execute more quickly we parallelize, multithread, cache
browser profiles on SSDs, implement grid solutions, and
optimize our test code all over the place. Sometimes this
breaks things. Sometimes this sends us into red light hell.

When the red light blocks the entire Engineering team for a
day that is painful. Their reaction is to fix the issue and make
the pain go away.

Fixing strategies have included spawning off a group that
met every time the light goes red, and holding a weekly
meeting to ”protect the build lights”. One of our engineers
was interested in learning more about the selenium driver and
spent his two week hackathon attempting sub-five-minute run
GUI tests.

To obtain better visibility into the tests we wrote a Splunk
connector to ingest metrics from Jenkins logs and a Splunk
engineering application. We wrote custom apps in Rally to
track build health that would gather metrics on how long a
build usually remains broken and the ratio of green to red
lights.

We wrote a flaky finder application that hammers new test
to see if they contain determinism or concurrency bugs and,
more recently, we built Flowdock integrations with bots that
report build health and can be queried for statistics on the test
suites.

I. Transparency and managing stakeholders

The business still runs on dates and dollars. We set annual
goals, quarterly goals and target market events. But if the

1This was an extension of an older agreement: when the lights are red you
cannot release to production.



Fig. 1. Monthly Story Throughput.

delivery teams are running continuous flow how do you
reconcile this?

The product team still maintains an annual roadmap but the
future is less defined now. By this we mean, the roadmap is
detailed for the current quarter, defined for the next and has
candidate initiatives for the rest of the year.

We still have monthly product council meetings where we
discuss recently released work, work in progress and take input
on the near-term roadmap.

All our planning and in progress work is organized using
Rally Software’s product. We have built dashboards that make
it easy for stakeholders to check in on progress and provide
vision to what features are coming soon. Using historical
data on team throughput we can estimate with a reasonable
accuracy when a feature will be shipped.

Finally, the individual development teams have planning
meetings on an ad-hoc basis. Usually when the queue of work
to pull from is low.

VII. IMPACT

We use our own software product to manage, track and
review engineering teams. Extracting data from pre- and post-
continuous flow days resulted in some interesting data.

Fig. 1 shows our monthly story throughput. The raw values
are represented by the lines that spike up and down on the left
of the graph. The smoothed out dotted lines are the power
projected throughput. The lower power line is the derived
story throughput given historical data, accounting for staffing
increases. The upper dotted line is the actual power line as
recorded when teams complete work.

The takeaway from this figure is that our throughput in-
creased per developer over time as our efforts toward con-
tinuous delivery progressed. This is likely due to the faster
feedback cycles and improved testing frameworks.

Our second figure, Fig. 2, describes the number of customer
reported defects per 10K logins over time. The regular spikes
on the left of the graph are produced by eight week releases.
At those times large batches of code were shipped, customers
would find defects and call our support team.

The arrow, just left of center of the graph, points to the
day we switched to continuous flow. From that point onwards
the spikes become smaller in amplitude as fewer cases are
reported at a given time.

Fig. 2. Escalated Case U Chart.

In this figure the upper and lower control lines have been
drawn (the upper and lower horizontal lines) and you will
notice that they are trending closer together. This indicates
that the defect reporting rate is narrowing and becoming more
predictable.

VIII. WHERE DO YOU START?

A. Engineering

Begin by pruning all manual steps in your process of
deployment to production.

To do this you must identify what your process is. Although
this may seem unimaginable for some readers there are parts
of the deployment process that are opaque to people in your
organization. Perform a Value Stream Mapping [6] with a
sticky note exercise where a team writes down the steps from
development to deployment and arranges the stickies on a wall.
The results can be surprising — people may not even agree.

After documenting your processes try to identify the slowest
manual step. This might be waiting for operations to repurpose
a test machine or have your QA team check your app for
regression bugs. Try to automate this step. Remove the manual
processes.

B. Invest in your tests

This cannot be emphasized enough: invest in your tests.
Your automated tests must be fast, solid and reliable. If your

test suite takes nine hours to run then the fastest you can ever
deploy is: nine hours. A slow feedback loop that takes hours
is painful, frustrating and easily ignored. If your test suite is
slower today than it was yesterday then you must fix it —
parallelize.

As discussed earlier: destroy flaky tests. If your team stops
paying attention to the tests they are useless. Never click the
“run” button again to get the test suite to pass because of some
ordering or concurrency bug. Prioritize fixing that bug.

Heavy investment in your test suite is expensive but the
payoff is huge. It cannot be overlooked.

C. Mimic production

The expense of the engineering effort for continuous de-
livery can be mitigated by making your test systems mimic
production. This will allow you to reuse metrics gathering,
monitoring, charting, and logging. There is an added bonus



in that as you scale your test suite it will uncover bugs in
production that only manifest themselves under load. Our
experiences show that our GUI test suite is a leading indicator
of production bugs that are six months from appearing — our
GUI tests run with a higher traffic rates than production, and
our production request rate traditionally grows to match that
number within six months.

D. Business
Your business team should use and embrace toggles. These

enablers were key to our success in moving to a deploy at
will scheme. Feature toggles can be used to schedule general
release of features giving Sales and Marketing the dates they
need to communicate with customers. Toggles can be used
for a variety of other experiments, such as A/B and User
Experience (UX) testing.

Experiment often and explore your tooling options. Build
trust and create transparency (transparency to the status of the
work) across the organization.

IX. CONCLUSION

The concept of continuous delivery is easy to understand but
its implementation may require that you change everything.

From your first steps you must have buy-in from your
organization and the enthusiasm from key stakeholders to carry
through. Begin by understanding all your process, not just
the technical requirements in Engineering but also your Sales,
Marketing, Support, Technical Account Managers, and User
Learning teams. Everyone will be effected. The process must
be transparent and clearly communicated.

When you have a complete understanding of your deploy-
ment process begin to automate the slowest parts of it. These
are usually the manual steps, which are also the most error
prone.

Invest heavily in your automated test suite, make tests
fast, reliable and approachable. Your QA team should have
a comprehensive understanding of what tests coverage exists
and where there are gaps. They should test plan and guide
developers in test coverage. Do not underestimate their exper-
tise.

Finally, have confidence. It is not free and it is not easy, but
the journey towards continuous delivery will result in a best
of class engineering discipline and velocity that will be the
envy of your competition.

REFERENCES

[1] D. Anderson, Kanban: Successful Evolutionary Change in
Your Software Business. Blue Hole, 2010. [Online]. Available:
http://books.google.com/books?id=RJ0VUkfUWZkC

[2] J. Humble and D. Farley, Continuous Delivery: Reliable Software
Releases through Build, Test, and Deployment Automation, ser. Addison-
Wesley Signature Series. Pearson Education, 2010. [Online]. Available:
http://books.google.com/books?id=6ADDuzere-YC

[3] D. Reinertsen, The principles of product development flow: second
generation lean product development. Celeritas Publishing, 2009.
[Online]. Available: http://books.google.com/books?id=1HlPPgAACAAJ

[4] M. Fowler. (2010, Oct.) Feature toggle. [Online]. Available:
http://martinfowler.com/bliki/FeatureToggle.html

[5] Typesafe. (2013) Akka library. [Online]. Available: http://akka.io/

[6] Q. Lee and B. Snyder, The Strategos Guide to Value Stream & Process
Mapping. Enna Products Corporation, 2006. [Online]. Available:
http://books.google.com.my/books?id=vshUVrKdS90C


